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1

Affine root systems

1.1 Notation and terminology

Let E be an affine space over a fieldK : that is to say,E is a set on which a
K -vector spaceV acts faithfully and transitively. The elements ofV are called
translationsof E, and the effect of a translationv ∈ V on x ∈ E is written
x + v. If y = x + v we writev = y− x.

Let E′ be another affine space overK , and letV ′ be its vector space of
translations. A mappingf : E → E′ is said to beaffine-linearif there exists a
K -linear mappingDf : V → V ′, called thederivativeof f , such that

f (x + v) = f (x) + (Df )(v).(1.1.1)

for all x ∈ E andv ∈ V . In particular, a functionf : E → K is affine-linear if
and only if there exists a linear formDf : V → K such that (1.1.1) holds.

If f, g : E → K are affine-linear andλ, µ ∈ K , the functionh = λ f +
µg : x �→ λ f (x) + µg(x) is affine-linear, with derivativeDh = λDf + µDg.
Hence thesetF ofall affine-linear functionsf : E → K is aK -vector space, and
D is aK -linear mapping ofF onto the dualV∗ of the vector spaceV . The kernel
of D is the 1-dimensional subspaceF0 of F consisting of the constant functions.

Let F∗ be the dual of the vector spaceF . For eachx ∈ E, the evaluation
mapεx : f �→ f (x) belongs toF∗, and the mappingx �→ εx embedsE in F∗

as an affine hyperplane. Likewise, for eachv ∈ V let εv ∈ F∗ be the mapping
f �→ (Df )(v). If v = y− x, wherex, y ∈ E, we haveεv = εy − εx by (1.1.1),
and the mappingv �→ εv embedsV in F∗ as the hyperplane through the origin
parallel toE.

Fromnowon,K will be the fieldRof real numbers, andV will bea real vector
space of finite dimensionn > 0, equipped with a positive definite symmetric
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2 1 Affine root systems

scalar product <u, v>. We shall write

|v| = <v, v>1/2

for the length of a vectorv ∈ V . ThenE is a Euclidean space of dimensionn,
and is a metric space for the distance functiond(x, y) = |x − y|.

We shall identifyV with its dual spaceV∗ by means of the scalar product
<u, v>. For any affine-linear functionf : E → R, (1.1.1) now takes the form

f (x + v) = f (x) + <Df, v>(1.1.2)

andDf is thegradientof f , in the usual sense of calculus.
We define a scalar product on the spaceF as follows:

< f, g> = <Df, Dg>.(1.1.3)

This scalar product is positive semidefinite, with radical the one-dimensional
spaceF0 of constant functions.

For eachv 
= 0 in V let

v∨ = 2v/|v|2

and for each non-constantf ∈ F let

f ∨ = 2 f/| f |2.
Also let

Hf = f −1(0)

which is an affine hyperplane inE. The reflection in this hyperplane is the
isometrysf : E → E given by the formula

sf (x) = x − f ∨(x)Df = x − f (x)Df ∨.(1.1.4)

By transposition,sf acts onF : sf (g) = g ◦ s−1
f = g ◦ sf . Explicitly, we have

sf (g) = g− < f ∨, g> f = g− < f, g> f ∨(1.1.5)

for g ∈ F .
For eachu 
= 0 in V , let su: V → V denote the reflection in the hyperplane

orthogonal tou, so that

su(v) = v − <u, v>u∨.(1.1.6)
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Then it is easily checked that

Dsf = sDf(1.1.7)

for any non constantf ∈ F .
Let w : E → E be an isometry. Thenw is affine-linear (because it pre-

serves parallelograms) and its derivativeDw is a linear isometry ofV , i.e., we
have <(Dw)u, (Dw)v> = <u, v> for all u, v ∈ V . The mappingw acts by
transposition onF : (w f )(x) = f (w−1x) for x ∈ V , and we have

D(w f ) = (Dw)(Df ).(1.1.8)

For eachv ∈ V we shall denote byt(v) : E → E the translation byv, so
that t(v)x = x + v. The translations are the isometries ofE whose derivative
is the identity mapping ofV. On F , t(v) acts as follows:

t(v) f = f − <Df, v>c(1.1.9)

wherec is the constant function equal to 1. For ifx ∈ E we have

(t(v) f )(x) = f (x − v) = f (x) − <Df, v>.

Let w: E → E be an isometry and letv ∈ V . Then

wt(v)w−1 = t((Dw)v).(1.1.10)

For if x ∈ E we have

(wt(v)w−1)(x) = w(w−1x + v) = x + (Dw)v.

1.2 Affine root systems

As in §1.1 letE be a real Euclidean space of dimensionn > 0, and letV be its
vector space of translations. We giveE the usual topology, defined by the metric
d(x, y) = |x − y|, so thatE is locally compact. As before, letF denote the
space (of dimensionn+ 1) of affine-linear functions onE.

An affine root systemon E [M2] is a subsetSof F satisfying the following
axioms (AR1)–(AR4):

(AR 1) SspansF, and the elements of S are non-constant functions.
(AR 2) sa(b) ∈ S for all a, b∈ S.
(AR 3) <a∨,b> ∈ Z for all a, b ∈ S.
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The elements ofSare calledaffine roots, or justroots. LetWS be the group
of isometries ofE generated by the reflectionssa for all a ∈ S. This groupWS

is theWeyl groupof S. The fourth axiom is now

(AR 4) WS (as a discrete group) acts properly on E.

In other words, ifK1 andK2 are compact subsets ofE, the set ofw ∈ WS such
thatwK1 ∩ K2 
= Ø isfinite.

From (AR3) it follows, just as in the case of a finite root system, that ifa and
λa are proportional affine roots, thenλ is one of the numbers± 1

2, ±1,±2. If
a ∈ Sand1

2a 
∈ S, the roota is said to beindivisible. If eacha ∈ Sis indivisible,
i.e., if the only roots proportional toa ∈ Sare±a, the root systemS is said to
bereduced.

If S is an affine root system onE, then

S∨ = {a∨ : a ∈ S}

is also an affine root system onE, called thedualof S. ClearlySandS∨ have
the same Weyl group, andS∨∨ = S.

Therankof S is defined to be the dimensionn of E (or V). If S′ is another
affine root system on a Euclidean spaceE′, an isomorphismof S onto S′ is
a bijection ofS ontoS′ that is induced by an isometry ofE onto E′. If S′ is
isomorphic toλS for some nonzeroλ ∈ R, we say thatSandS′ aresimilar.

We shall assume throughout thatS is irreducible, i.e. that there exists no
partition ofS into two non-empty subsetsS1, S2 such that <a1, a2> = 0 for all
a1 ∈ S1 anda2 ∈ S2.

The following proposition ([M2], p. 98) provides examples of affine root
systems:

(1.2.1) Let R be an irreducible finite root system spanning a real finite-
dimensional vector space V, and let<u, v> be a positive-definite symmetric
bilinear form on V, invariant under the Weyl group of R. For eachα ∈ R and
r ∈ Z let aα,r denote the affine-linear function on V defined by

aα,r (x) = <α, x> + r.

Then the set S(R) of functions aα,r , whereα ∈ R and r is any integer if12α /∈ R
(resp. any odd integer if12α ∈ R) is a reduced irreducible affine root system
on V.
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Moreover, every reduced irreducible affine root system is similar to either
S(R) orS(R)∨, whereR is a finite (but not necessarily reduced) irreducible root
system ([M2],§6).

Let S be an irreducible affine root system on a Euclidean spaceE. The set
{Ha: a ∈ S}of affinehyperplanes inE onwhich theaffine roots vanish is locally
finite ([M2], §4). Hence the setE − ⋃

a∈S Ha is open inE, and therefore so
also are the connected components of this set, sinceE is locally connected.
These components are called thealcovesof S, or ofWS, and it is a basic fact
(loc. cit.) that the Weyl groupWS acts faithfully and transitively on the set of
alcoves. Each alcove is an open rectilinearn-simplex, wheren is the rank ofS.

Choose an alcoveC once and for all. Letxi (i∈I ) be the vertices ofC,
so thatC is the set of all pointsx = ∑

λi xi such that
∑

λi = 1 and eachλi
is a positive real number. LetB = B(C) be the set of indivisible affine roots
a ∈ Ssuch that (i)Ha is a wall ofC, and (ii)a(x) > 0 for all x ∈ C. ThenB
consists ofn+ 1 roots, one for each wall ofC, andB is a basis of the spaceF
of affine-linear functions onE. The setB is called abasisof S.

The elements ofB will be denoted byai (i∈I ), the notation being chosen
so thatai (xj ) = 0 if i 
= j . Sincexi is in the closure ofC, we haveai (xi ) > 0.
Moreover, <ai ,aj> ≤ 0 wheneveri 
= j .

The alcoveC having been chosen, an affine roota ∈ S is said to bepositive
(resp.negative) if a(x) > 0 (resp.a(x) < 0) for x ∈ C. Let S+ (resp.S−)
denote the set of positive (resp. negative) affine roots; thenS= S+ ∪ S− and
S− = −S+. Moreover, eacha ∈ S+ is a linear combination of theai with
nonnegative integer coefficients, just as in the finite case ([M2],§4).

Let αi = Dai (i∈I ). Then+ 1 vectorsαi ∈ V are linearly dependent, since
dim V = n. There is a unique linear relation of the form

∑

i∈I
miαi = 0

where themi are positive integers with no common factor, and at least one of
themi is equal to 1. Hence the function

c =
∑

i∈I
mi ai(1.2.2)

is constant onE (because its derivative is zero) and positive (because it is
positive onC).

Let

� = {Da : a ∈ S}.
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Then� is an irreducible (finite) root system inV . A vertexxi of the alcoveC is
said to bespecialfor S if (i) mi = 1 and (ii) the vectorsα j ( j∈I , j 
= i ) form
a basis of�. For each affine root systemS there is at least one special vertex
(see the tables in§1.3). We shall choose a special vertex once and for all, and
denote it byx0 (so that 0 is a distinguished element of the index setI ). Thus
m0 = 1 in (1.2.2), and if we takex0 as origin inE, thereby identifyingE with
V , the affine rootai (i 
= 0) is identified withαi .

The Cartan matrix and the Dynkin diagram of an irreducible affine root
systemSare defined exactly as in the finite case. TheCartan matrixof S is the
matrix N = (ni j )i, j∈I whereni j = <a∨

i ,aj>. It hasn + 1 rows and columns,
and its rank isn. Its diagonal entries are all equal to 2, and its off-diagonal
entries are integers≤0. If m = (mi )i∈I is the column vector formed by the
coefficients in (1.2.2), we haveNm= 0.

TheDynkin diagramof S is the graph with vertex setI , in which each pair
of distinct verticesi, j is joined bydi j edges, wheredi j = max(|ni j |, |nji |). We
havedi j ≤ 4 in all cases. For each pair of verticesi, j such thatdi j > 0 and
|ai | > |aj |, we insert an arrowhead (or inequality sign) pointing towards the
vertex j corresponding to the shorter root.

If S is reduced, theDynkin diagram ofS∨ is obtained from that ofS by
reversing all arrowheads. IfS = S(R) as in (1.2.1), whereR is irreducible
and reduced, the Dynkin diagram ofS is the ‘completed Dynkin diagram’ of
R([B1], ch. 6).

If S is reduced, the Cartan matrix and the Dynkin diagram each determine
Sup to similarity. IfS is not reduced, the Dynkin diagram still determinesS,
provided that the verticesi ∈ I such that 2ai ∈ S are marked (e.g. with an
asterisk).

1.3 Classification of affine root systems

Let Sbe an irreducible affine root system. IfS is reduced, thenS is similar to
eitherS(R) orS(R)∨ (1.2.1),whereR is an irreducible root system. IfR is of type
X, whereX is one of the symbolsAn, Bn,Cn, Dn, BCn, E6, E7, E8, F4,G2,
we say thatS(R) (resp.S(R)∨) is of typeX (resp.X∨).

If S is not reduced, it determines two reduced affine root systems

S1 = {a ∈ S : 1
2a /∈ S}, S2 = {a ∈ S : 2a /∈ S}

with the same affine Weyl group, andS = S1 ∪ S2. We say thatS is of type
(X,Y) whereX,Y are the types ofS1, S2 respectively.
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The reduced and non-reduced irreducible affine root systems are listed below
((1.3.1)–(1.3.18)). In this list,ε1, ε2, . . . is a sequence of orthonormal vectors
in a real Hilbert space.

For each type we shall exhibit
(a) an affine root systemSof that type;
(b) a basis ofS;
(c) the Dynkin diagram ofS. Here the numbers attached to the vertices of the

diagram are the coefficientsmi in (1.2.2).

We shall first list the reduced systems ((1.3.1)–(1.3.14)) and then the non-
reduced systems ((1.3.15)–(1.3.18)).

(1.3.1) Type An (n ≥ 1).

(a) ±(εi − ε j ) + r (1 ≤ i < j ≤ n+ 1; r ∈ Z).
(b) a0 = −ε1 + εn+1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n).

(c) 11 1

1

1

1

1

1

(n� 1) (n� 2)

…

…

(1.3.2) Type Bn (n ≥ 3).

(a) ±εi + r (1 ≤ i ≤ n; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = εn.

(c) 2 2 2 2

1

1

…

(1.3.3) Type B∨n (n ≥ 3).

(a) ±2εi + 2r (1 ≤ i ≤ n; r ∈ Z); ± εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
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(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = 2εn.

(c) 2 2 2 1

1

1

…

(1.3.4) Type Cn (n ≥ 2).

(a) ±2εi + r (1 ≤ i ≤ n; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −2ε1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = 2εn.

1 2 2 2 2 1
…

(c)

(1.3.5) Type C∨
n (n ≥ 2).

(a) ±εi + 1
2r (1 ≤ i ≤ n; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).

(b) a0 = −ε1 + 1
2, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = εn.

1 1 1 1 1 1
…(c)

(1.3.6) Type BCn (n ≥ 1).

(a) ±εi + r (1 ≤ i ≤ n; r ∈ Z); ±2εi + 2r + 1 (1≤ i ≤ n; r ∈ Z);

±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).

(b) a0 = −2ε1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = εn.
(c)

1 2

(n� 1)

1 2 2 2 2 2
…

(n� 2)

(1.3.7) Type Dn (n ≥ 4).

(a) ±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z)
(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = εn−1+ εn.
(c)

2 2 2 2

1

1

1

1

…
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These are the “classical” reduced affine root systems. The next seven types
((1.3.8)–(1.3.14)) are the “exceptional” reduced affine root systems. In (1.3.8)–
(1.3.10) let

ωi = εi − 1

9
(ε1 + · · · + ε9) (1 ≤ i ≤ 9).

(1.3.8) Type E6.

(a) ±(ωi − ω j ) + r (1 ≤ i < j ≤ 6; r ∈ Z);
±(ωi + ω j + ωk) + r (1 ≤ i < j < k ≤ 6; r ∈ Z);
±(ωi + ω2 + · · · + ω6) + r (r ∈ Z).

(b) a0 = −(ω1 + · · · + ω6) + 1, ai = ωi − ωi+1 (1 ≤ i ≤ 5),
a6 = ω4 + ω5 + ω6.

(c) 1 2

O 2

O 1

123

(1.3.9) Type E7.

(a) ±(ωi − ω j ) + r (1 ≤ i < j ≤ 7; r ∈ Z);
±(ωi + ω j + ωk) + r (1 ≤ i < j < k ≤ 7; r ∈ Z);
±(ω1 + · · · + ω̂i + · · · + ω7) + r (1 ≤ i ≤ 7; r ∈ Z).

(b) a0 = −(ω1 + · · · + ω6) + 1, ai = ωi − ωi+1 (1 ≤ i ≤ 6),
a7 = ω5 + ω6 + ω7.

(c) 21 3

2

2 134

(1.3.10) Type E8.

(a) ±(ωi − ω j ) + r (1 ≤ i < j ≤ 9; r ∈ Z);
±(ωi + ω j + ωk) + r (1 ≤ i < j < k ≤ 9; r ∈ Z).

(b) a0 = ω1 − ω2 + 1, ai = ωi+1 − ωi+2 (1 ≤ i ≤ 7),
a8 = ω7 + ω8 + ω9.

(c) 4321 5

3

246



10 1 Affine root systems

(1.3.11) Type F4.

(a) ±εi + r (1 ≤ i ≤ 4; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ 4; r ∈ Z);
1
2(±ε1 ± ε2 ± ε3 ± ε4) + r (r ∈ Z).

(b) a0 = −ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = ε3 − ε4, a3 = ε4,

a4 = 1
2(ε1 − ε2 − ε3 − ε4).

(c) 21 3 24

(1.3.12) Type F∨4 .

(a) ±2εi + 2r (1 ≤ i ≤ 4; r ∈ Z); ±εi ± ε j + r (1 ≤ i < j ≤ 4; r ∈ Z);
±ε1 ± ε2 ± ε3 ± ε4 + 2r (r∈Z).

(b) a0 = −ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = ε3 − ε4, a3 = 2ε4,

a4 = ε1 − ε2 − ε3 − ε4.

(c) 21 3 12

(1.3.13) Type G2.

(a) ±(εi − 1
3(ε1 + ε2 + ε3)) + r (1 ≤ i ≤ 3; r ∈ Z);

±(εi − ε j ) + r (1 ≤ i < j ≤ 3; r ∈ Z).
(b) a0 = ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = ε3 − 1

3(ε1 + ε2 + ε3).

(c) 1 2 3

(1.3.14) Type G∨
2 .

(a) ±(3εi − (ε1 + ε2 + ε3)) + 3r (1 ≤ i ≤ 3; r ∈ Z);
±(εi − ε j ) + r (1 ≤ i < j ≤ 3; r ∈ Z).

(b) a0 = ε1 − ε2 + 1, a1 = ε2 − ε3, a2 = 3ε3 − (ε1 + ε2 + ε3).

(c) 1 2 1

We come now to the non-reduced affine root systems. In the Dynkin diagrams
below, an asterisk placed over a vertex indicates that ifai is the affine root
corresponding to that vertex in a basis ofS, then 2ai ∈ S.

(1.3.15) Type(BCn,Cn) (n ≥ 1).

(a) ±εi + r, ±2εi + r (1 ≤ i ≤ n, r ∈ Z);
±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
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(b) a0 = −2ε1 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = εn.

(c) * *
1 2 1 2 2

O
2 2 2

(n� 1) (n� 2)

…

(1.3.16) Type(C∨
n , BCn) (n ≥ 1).

(a) ±εi + 1
2r, ±2εi + 2r (1 ≤ i ≤ n; r ∈ Z);

±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −ε1 + 1

2, ai = εi − εi+1, an = εn.
(c) * *

1 1 1 1 11 1 1

(n � 1) (n � 2)

…

(1.3.17) Type(C2,C∨
2 ), (Bn, B∨

n ) (n ≥ 3).

(a) ±εi + r, ±2εi + 2r (1 ≤ i ≤ n; r ∈ Z);
±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).

(b) a0 = −ε1 − ε2 + 1, ai = εi − εi+1 (1 ≤ i ≤ n− 1); an = εn.

(c)

2 2

*
1 2 1

*

(n � 2) (n � 3)

2 2 2

1

1

…

(1.3.18) Type(C∨
n ,Cn) (n ≥ 1).

(a) ±εi + 1
2r, ±2εi + r (1 ≤ i ≤ n; r ∈ Z);

±εi ± ε j + r (1 ≤ i < j ≤ n; r ∈ Z).
(b) a0 = −ε1 + 1

2, ai = εi − εi+1 (1 ≤ i ≤ n− 1), an = εn.

(c) * ** *
1 1 1 1 11 1 1

(n � 1) (n � 2)

…

For each irreducible affine root systemS, leto(S) denote the number ofWS -
orbits inS. If Sis reduced, the list above shows thato(S) ≤ 3, and thato(S) = 3
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only whenSis of typeCn,C∨
n orBCn(n ≥ 2). If Sis not reduced, the maximum

value ofo(S) is 5, and is attained only whenS is of type (C∨
n ,Cn) (n ≥ 2). The

five orbits areO1, . . . ,O5 where, in the notation of (1.3.18) above,

O1 = {±εi + r : 1 ≤ i ≤ n, r ∈ Z}, O2 = 2O1, O3 = O1 + 1
2,

O4 = 2O3 = O2 + 1, O5 = {±εi ± ε j + r : 1 ≤ i < j ≤ n, r ∈ Z}.
Finally, the list above shows that all the non-reduced irreducible affine root

systems of rankn are subsystems of (1.3.18), obtained by deleting one or more
of theWS-orbits; and so are the “classical” root systems (1.3.2)–(1.3.7).

1.4 Duality

In later chapters, in order to formulate conveniently certain dualities, we shall
need to consider not one but a pair (S, S′) of irreducible affine root systems, to-
getherwith a pair (R, R′) of finite root systemsandapair (L , L ′) of lattices inV .

Let R be a reduced finite irreducible root system inV , and letP (resp.P∨)
denotethe weight lattice ofR (resp.R∨), andQ (resp.Q∨) the root lattice of
R (resp.R∨). Fix a basis (αi )i∈I0 of R, and letϕ be the highest root ofR relative
to this basis. In (1.4.1) and (1.4.2) below we shall assume that the scalar product
onV is normalized so that|ϕ|2 = 2 and thereforeϕ∨ = ϕ. (This conflicts with
standard usage, as in§ 1.3, only whenR is of typeCn (1.3.4).)

The pairs (S, S′), (R, R′), (L , L ′) to be considered are the following:

S= S(R), S′ = S(R∨); R′ = R∨; L = P, L ′ = P∨.(1.4.1)

ThenS (resp.S′) has a basis (ai )i∈I (resp. (a′
i )i∈I ) whereai = αi (i 
= 0),a0 =

−ϕ + c; a′
i = α∨

i (i 
= 0),a′
0 = −ψ∨ + c, whereψ is the highestshort

root of R.

S= S′ = S(R)∨; R′ = R; L = L ′ = P∨.(1.4.2)

ThenS= S′ has a basis (ai )i∈I = (a′
i )i∈I , whereai = a′

i = α∨
i if i 
= 0, and

a0 = a′
0 = −ϕ + c.

(1.4.3) S= S′ is of type (C∨
n ,Cn); R = R′ is of typeCn; L = L ′ = Q∨.We

shall assume thatS is as given in (1.3.18), so thatai = αi = εi − εi+1 (1 ≤ i ≤
n− 1) andαn = 2an = 2εn, andL = Z

n.

For eachα ∈ R, letα′(= α or α∨) be the corresponding element ofR′. Then
<λ′, α> and <λ, α′> are integers, for allλ ∈ L , λ′ ∈ L ′ andα ∈ R.
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In each case let

�′ = L ′/Q∨,(1.4.4)

a finite abelian group. Also let

<L , L ′> = {<λ, λ′> : λ ∈ L , λ′ ∈ L ′}.
Then we have

<L , L ′> = e−1
Z(1.4.5)

wheree is the exponent of�′, except in case (1.4.2) whenR is of typeBn or
C2n, in which casee= 1.

Anticipating Chapter 2, letW = W(R, L ′) be the group of displacements of
V generated by the Weyl groupW0 of R and the translationst(λ′), λ′ ∈ L ′, so
thatW is the semidirect product ofW0 andt(L ′):

W = W(R, L ′) = W0 � t(L ′).(1.4.6)

Dually, let

W′ = W(R′, L) = W0 � t(L).(1.4.6′)

By transposition, bothW andW′ act onF .

(1.4.7) W permutes S and W′ permutes S′.

This follows from the fact, remarked above, that<λ′, α> and<λ, α′> are
integers, for allλ ∈ L , λ′ ∈ L ′ andα ∈ R.

Now let

� = L ⊕ Zc0(1.4.8)

wherec0 = e−1c. We shall regard elements of� as functions onV : if f ∈ �,
say f = λ + rc0 whereλ ∈ L andr ∈ Z, then

f (x) = <λ, x> + e−1r

for x ∈ V. Then� is a lattice inF .

(1.4.9) � is stable under the action of W.
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Proof Let w ∈ W, sayw = vt(λ′) wherev ∈ W0 andλ′ ∈ L ′. If f =
λ + rc0 ∈ � andx ∈ V , we have

w f (x) = f (w−1x) = f (v−1x − λ′)
= <λ, v−1x − λ′> + e−1r
= <vλ, x> + e−1r − <λ, λ′>

so that

w f = vλ + (r − e<λ, λ′>)c0

is in �, sincee<λ, λ′> ∈ Z by (1.4.5). �

1.5 Labels

Let Sbe an irreducible affine root system as in§1.4 and letW = W(R, L ′). A
W-labelling kof S is a mappingk : S→ R such thatk(a) = k(b) if a, b are in
the sameW-orbit in S.

If S = S(R) whereR is simply-laced (typesA, D, E), all the labelsk(a)
are equal. IfS= S(R) or S(R)∨ whereR 
= R∨, there are at most two labels,
one for short roots and one for long roots. Finally, ifS is of type (C∨

n ,Cn) as
in (1.4.3), there are fiveW-orbitsO1, . . . ,O5 in S, as observed in§1.3, and
correspondingly five labelsk1, . . . , k5, whereki = k(a) for a ∈ Oi .

Given a labellingk of S as above, we define adual labelling k′ of S′, as
follows:

(a) if S= S(R), S′ = S(R∨) (1.4.1) anda′ = α∨ + rc ∈ S′, then
k′(a′) = k(α + rc).

(b) If S= S′ = S(R)∨ (1.4.2), thenk′ = k.
(c) If S= S′ is of type (C∨

n ,Cn) (1.4.3), the dual labelsk′
i (1 ≤ i ≤ 5) are

defined by

k′
1 = 1

2(k1 + k2 + k3 + k4),

k′
2 = 1

2(k1 + k2 − k3 − k4),

k′
3 = 1

2(k1 − k2 + k3 − k4),(1.5.1)

k′
4 = 1

2(k1 − k2 − k3 + k4),

k′
5 = k5,

andk′(a) = k′
i if a ∈ Oi .
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In all cases let

ρk′ = 1

2

∑

α∈R+
k′(α∨)α,

(1.5.2)

ρ ′
k = 1

2

∑

α∈R+
k(α′∨)α′.

whereR+ is theset of positive rootsofRdeterminedby thebasis (αi ). Explicitly,
whenS= S(R) (1.4.1) we have

ρk′ = 1

2

∑

α∈R+
k(α)α,

ρ ′
k = 1

2

∑

α∈R+
k(α)α∨;

whenS= S(R)∨ (1.4.2) we have

ρk′ = ρ ′
k = 1

2

∑

α∈R+
k(α∨)α;

and whenS is of type (C∨
n ,Cn) (1.4.3), so thatR is of typeCn,

ρk′ =
n∑

i=1

(k′
1 + (n− i )k5)εi ,

ρ ′
k =

n∑

i=1

(k1 + (n− i )k5)εi .

For eachw ∈ W0, we have

w−1ρ ′
k = 1

2

∑

α∈R+
σ (wα)k(α′∨)α′,

(1.5.3)
w−1ρk′ = 1

2

∑

α∈R+
σ (wα)k′(α∨)α,

whereσ (wα) = +1 or−1 according aswα ∈ R+ or R−. In particular, ifi ∈ I ,
i 
= 0 we have

siρ
′
k = ρ ′

k − k
(
α′∨
i

)
α′
i ,

(1.5.4)
siρk′ = ρk′ − k′(α∨

i

)
αi .

(1.5.5) If the labels k(α′∨
i ), k′(α∨

i ) are all nonzero, thenρ ′
k andρk′ are fixed

only by the identity element of W0. �
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Notes and references

Affine root systems were introduced in [M2], which contains an account of
their basic properties and their classification. The list of Dynkin diagrams in
§1.3 will also be found in the article of Bruhat and Tits [B3] (except that
both [M2] and [B3] omit the diagram (1.3.17) whenn = 2). The reduced
affine root systems (1.3.1)–(1.3.14) are in one-one correspondence with the
irreducible affine (or Euclidean) Kac-Moody Lie algebras, and correspondingly
their diagrams appear in Moody’s paper [M9] and Kac’s book [K1].




